CHROMBIO. 3928

# DETERMINATION OF METHYLPREDNISOLONE METABOLITES IN HUMAN URINE BY GAS CHROMATOGRAPHY–MASS SPECTROMETRY

## G.M. RODCHENKOV, V.P. URALETS\* and V.A. SEMENOV

Anti-Doping Centre, Central Institute of Sports Medicine, Elisavetinsky pr. 10, Moscow 107005 (U.S.S.R.)

(First received May 19th, 1987; revised manuscript received August 24th, 1987)

### SUMMARY

Methylprednisolone and its metabolites were studied as their methoxyamine-trimethylsilyl derivatives by means of capillary gas chromatography-mass spectrometry. The expected unchanged drug and 11-keto and 20-hydroxy metabolites were found in human urine. The typical metabolites are 6,7dehydro analogues of the above-mentioned compounds. Characteristic gas chromatographic profiles of urine steroids were obtained. Retention indices and m/z values are presented for methylprednisolone and its main metabolites.

## INTRODUCTION

Methylprednisolone (MP;  $11\beta$ , $17\alpha$ ,21-trihydroxy- $6\alpha$ -methylpregna-1,4-diene-3,20-dione; (Fig. 1) is a widely used synthetic corticosteroid (CS).

Although giving positive therapeutic effects in the treatment of certain diseases, CS may be harmful [1] on chronic abuse as sometimes happens in sports. In 1986 such drugs were banned by the IOC Medical Commission and included in the doping list. A reliable procedure for the detection of CS in human urine can be developed on the basis of a metabolism study. Capillary gas chromatography coupled with mass spectrometry (GS-MS) was chosen for the identification of metabolites by profiling of methoxyamine-trimethylsilyl (MO-TMS) or TMS derivatives of urine steroids after administration of some CS [2-5] and anabolic steroids [6-8]. Prednisolone is converted reversibly into prednisone and forms a major 20-hydroxy metabolite in the human body [2] similar to natural CS. 4,5-Dihydro metabolites have also been found [2]. Triamcinolone metabolizes poorly and is excreted mainly as such, whereas dexamethasone gives major 6-hydroxy metabolites [3,4]. Oxidation of the 11-hydroxy group is consid-



Fig. 1. Structure of MP.

erably supressed by  $9\alpha$ -fluoro substitution. Apparently 20-hydroxylation is hindered by 16-methyl and especially 16-hydroxy groups, although a minor 20-hydroxy metabolite was detected for dexamethasone [3].

The human metabolism of MP should probably yield 11-keto and 20-hydroxy products (11KMP and 20HMP). This suggestion is in agreement with the recent identification of these metabolites in equine urine [5].  $6\beta$ -Hydroxy metabolites could also be expected as 3-one-1,4-diene synthetic steroids undergo this conversion readily [3,4,8], although the  $6\alpha$ -methyl group may influence oxidation.

### EXPERIMENTAL

#### **Materials**

MP (20 mg) (Orion, Finland) was administered orally.  $\beta$ -Glucuronidase/arylsulphatase from *Helix pomatia* and N-trimethylsilylimidazole (TSIM) were purchased from Serva (Heidelberg, FRG). Methoxyamine hydrochloride (Serva) was dissolved in pyridine (Pierce, Rockford, IL, U.S.A.; silylation grade) to produce a 4% solution. Organic solvents were redistilled before use.

## Sample preparation

Urine samples were collected during 48 h and stored at  $-5^{\circ}$ C. Free steroids were isolated by diethyl ether (20 ml) extraction of urine (15 ml) adjusted to pH 9 with 25% sodium hydroxide solution with subsequent saturation with sodium sulphate. Conjugated steroids were isolated in a similar way after enzyme hydrolysis. A 10-ml volume of urine was adjusted to pH 4.5 by addition of acetic acid and 1 ml of acetate buffer, then incubated with 0.2 ml of  $\beta$ -glucuronidase at 37°C overnight. The ether extract was dried with anhydrous sodium sulphate and evaporated to dryness.

The accelerated version [9] of MO-TMS derivatization was used. A 50- $\mu$ l volume of 4% MO solution was added to the dry steroid residue and this mixture was heated at 80°C for 1 h. Pyridine was removed under vacuum at 80°C, then 30  $\mu$ l of TSIM were added and silylation was carried out for 1 h at 110°C. Prior to GC-MS analysis the samples were purified [10]. A 0.5-ml volume of dichloromethane was added to the reaction mixture and the organic layer was washed with 0.5 ml of 0.05 M sulphuric acid and then twice with distilled water. After drying with sodium sulphate the organic layer was evaporated to dryness and the

residue was dissolved in benzene (15  $\mu$ l). A 1- $\mu$ l volume of this solution was injected into the gas chromatograph.

## Gas chromatography

A Hewlett-Packard (HP) 5730A gas chromatograph was equipped with an HP fused-silica capillary column ( $25 \text{ m} \times 0.20 \text{ mm}$  I.D., cross-linked methylsilicone, film thickness 0.11  $\mu$ m) coupled via a flow splitter to nitrogen-phosphorus and flame ionization detectors. Helium was used as the carrier gas at an inlet column pressure of 1.3 bar. The conditions of analysis were as follows: injection port and detectors temperature, 300°C; column temperature, programmed from 220°C (2 min) to 270°C at 2°C/min; splitting ratio, 50:1. Data handling, calculation of retention indices and chromatogram plotting [6] were carried out by means of an HP 3354 B/C laboratory data system.

## Gas chromatography-mass spectrometry

A Hewlett-Packard 5995 quadrupole mass spectrometer with an HP 9825B computer was used. An HP fused-silica capillary column  $(12.5 \text{ m} \times 0.20 \text{ mm} \text{ I.D.}, \text{ cross-linked methylsilicone, film thickness } 0.33 \,\mu\text{m})$  was coupled to the ion source via an open split interface. Helium was used as the carrier gas at a linear flow-rate of 25 cm/s. Spitless injection (0.3 min delay) and a splitting ratio of 1:10 were used. The injector and GC-MS interface were maintained at 290°C and the GC column temperature programme was 180°C (0.5 min), ballistic heating to 220°C (2 min), and heating at 4°C/min to 280°C (10 min). Electron-impact mass spectra were acquired at 70 eV, 300 mA and 200°C in the ion source. Scanning was performed from 70 to 800 a.m.u. for 2 s. Repetitive selected-ion monitoring (SIM) was used for the identification of minor and unresolved metabolites.

## RESULTS AND DISCUSSION

GC urine steroid profiles before and after administration of MP are presented in Fig. 2. Unchanged drug (Fig. 2b, peaks 4 and 7) and its 11-keto (peaks 1 and 2) and 20-hydroxy (peaks 11 and 13) metabolites appear between 22 and 29 min when natural steroids have already been eluted from the column. This obvious metabolic conversion (C-11 hydroxy group oxidation and C-20 keto group reduction) occurs during the first few hours following drug administration. Each compound gives two peaks, representing the syn and anti stereoisomers of the C-3 methoxyimine group [11]. Peak 3 belongs to the biological background.

Following 6 h after MP administration, the amount of natural corticosteroid metabolites decreases significantly (Fig. 2c). The GC fragment of the steroid profile showing MP and its metabolites is complicated (Fig. 3). Metabolite 6 with a derivative molecular mass of 646 increased, and may be identified from its mass spectral data as 6,7-dehydro-MP. Another isomer of this metabolite co-elutes with the unchanged MP (peak 4). Fig. 4a-d shows SIM chromatograms for authentic MP (m/z 648 and 617) and the 6,7-dehydro metabolite with a molecular mass 2 a.m.u. less (m/z 646 and 615). In the course of excretion the metabolite increases while MP decreases.



Fig. 2. GC urine steroid profiles (nitrogen-phosphorus detector, MO-TMS derivatives) (a) before, (b) 1.5 h after and (c) 6 h after administration of MP. Peaks: A = androsterone: E = etiocholanolone; 11K = 11-ketoandrosterone and 11-ketoetiocholanolone; 11HA = 11-hydroxyandrosterone; 11HE = 11-hydroxyetiocholanolone; THE = tetrahydrocortisone; THF = tetrahydrocortisol.



Fig. 3. Section of GC urine steroid profile (free fraction) 6 h after administration of MP. (a) Nitro gen-phosphorus detection; (b) flame ionization detection.



Fig. 4. SIM chromatograms of 6,7-dehydro-MP (m/z 646 and 615), MP (m/z 648 and 615), 6,7-dehydro-20HMP (m/z 691) and 20HMP (m/z 693).

### TABLE I

GAS CHROMATOGRAPHIC RETENTION INDICES (RI) AND CHARACTERISTIC IONS IN THE MASS SPECTRA OF MO-TMS DERIVATIVES OF METHYLPREDNISOLONE AND ITS METABOLITES

| Compound                          | Peak               | RI                           | Molecular mass | m/z (relative intensity)                                                                                                                                                                                         |
|-----------------------------------|--------------------|------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11KMP,<br>diMO-diTMS              | 1<br>2             | 3195<br>3212                 | 574            | 73(100), 103(15), 105(12), 114(11), 117(9), 129(9), 131(11), 147(52), 163(5), 229(9), 323(6), 453(1), 543(1), 574(1)                                                                                             |
| 6,7-Dehydro-11KMP,<br>diMO-diTMS  | 1<br>2             | 3195<br>3213                 | 572            | Minor component of peaks 1 and 2.<br>Mass spectrum was not obtained                                                                                                                                              |
| MP,<br>diMO-triTMS                | 4<br>7             | 3267<br>3293                 | 648            | 73(100), 103(10), 117(6), 129(9),<br>132(7), 134(7), 147(5), 163(13),<br>276(5), 307(3), 366(3), 437(2),<br>527(3), 617(5), 648(1)                                                                               |
| 6,7-Dehydro-MP,<br>diMO-triTMS    | 4<br>6             | 3267<br>3285                 | 646            | 73(100), 103(12), 129(55), 222(15),<br>615(12), 646(10). Individual mass<br>spectrum was not obtained                                                                                                            |
| Dehydroxy-20HMP,<br>MO-triTMS     | 5<br>7             | 3276<br>3295                 | 605            | Individual mass spectrum was not obtained                                                                                                                                                                        |
| 6,7-Dehydro-20HMP,<br>MO-tetraTMS | 6<br>8<br>10<br>12 | 3288<br>3306<br>3323<br>3342 | 691            | Individual mass spectrum was not obtained                                                                                                                                                                        |
| 20HMP,<br>MO-tetraTMS             | 7<br>9<br>11<br>13 | 3296<br>3318<br>3337<br>3364 | 693            | 73 (100), 117 (16), 129 (18), 134 (18),<br>147 (44), 163 (23), 189 (11), 191 (13),<br>205 (75), 221 (12), 253 (14), 302 (18),<br>368 (13), 392 (21), 399 (9), 423 (8),<br>482 (12), 500 (12), 513 (10), 572 (9), |
|                                   |                    |                              |                | 603(5), 662(15), 693(3)                                                                                                                                                                                          |



Fig. 5. Proposed metabolism of MP.

A compound with a derivative molecular mass of 646 was previously observed by Gallicano et al. [5] in an equine urine steroid fraction after MP administration. It was tentatively identified [5] as a C-11 trimethylsilyl enol ether derivative resulting from extended heating of 11-KMP. Following this suggestion, we heated prednisolone (Serva) with TSIM for 6 h at 110 °C. No enolization product was detected. Natural corticosteroids also do not give such products [12]. In our opinion the compound found by Gallicano et al. [5] was 6,7-dehydro-MP.

A response discrimination between nitrogen-phosphorus and flame ionization detection for 20-hydroxy metabolites (peaks 5, 8–13 and the right shoulder of peak 7) having only one MO group at C-3 is evident in Fig. 3. For the C-3 and C-20 diketo compounds (peaks 1, 2, 4, 6 and 7) the nitrogen-phosphorus detector response is doubled.

Further GS-MS studies showed that 6,7-double bond formation becomes a ma-

jor metabolic route for MP. Both 11KMP and 20HMP also have 6,7-double bond analogues. In total four pairs (syn and anti stereoisomers) of these three metabolites were detected: 6,7-dehydro-MP, 6,7-dehydro-11KMP and 6,7-dehydro-20HMP ( $20\alpha$ - and  $20\beta$ -isomers). In some instances their chromatographic peaks overlapped (Fig. 4). Retention indices and characteristic ions in the mass spectra of the MO-TMS derivatives of MP and its metabolites are presented in Table I. The retention indices of 11KMP and its 6,7-dehydro analogue are almost identical. Nevertheless, the suggestion of the formation of 11KMP (molecular mass=574) and 6,7-dehydro-11KMP (572) is based on mass spectral data. SIM traces for molecular and characteristic ions of both metabolites were recorded. The average ratio of the peak areas (572/574, 541/543, 472/474) was 1:3.

Both  $20\alpha$ - and  $20\beta$ -hydroxy isomers are formed during MP metabolism. Owing to *syn-anti* isomerization of MO derivatives the total number of GC peaks doubles for 20HMP (peaks 7, 9, 11 and 13; Fig. 4f) and for 6,7-dehydro-20HMP (peaks 6, 8, 10 and 12; Fig. 4e).

One more interesting metabolite (molecular mass=605, peak 5 and minor component of peak 7) was found in an SIM search. The decrease of 88 a.m.u. for a molecular ion in comparison with the 20HMP derivative is an indication of possible dehydroxylation. The intense  $M^+ - 205$  ion shows that the C-17 chain remains unchanged and dehydroxylation could take place at C-11 or C-17.

Attempts were made to detect a  $6\beta$ -hydroxy metabolite by SIM analysis for m/z 736 (M<sup>+</sup>) and 705 (M<sup>+</sup>-CH<sub>3</sub>O). However, no evidence for this compound was found.

The proposed metabolism of MP is shown in Fig. 5. Compounds at the bottom are 6,7-dehydro metabolites, those on the right are 20-hydroxy metabolites and those on the left are 11-ketosteroids.

#### CONCLUSION

In the screening of urine steroids the major 6,7-dehydro and 20-hydroxy metabolites and unchanged MP may be of value for identification purposes. The ion chromatograms using m/z values as in Fig. 4 permit the reliable detection of MPpositive samples.

#### REFERENCES

- 1 A. Wade (Editor), Martindale, The Extra Pharmacopoeia, Pharmaceutical Press, London, 27 ed., 1979, p. 389.
- 2 V.P. Uralets, A.V. Krokhin and V.A. Semenov, J. Pharm. Biomed. Anal., 5 (1987) in press.
- 3 G.M. Rodchenkov, V.P. Uralets, V.A. Semenov and P.A. Leclercq, in P. Sandra (Editor), Proceedings of the 8th International Symposium on Capillary Chromatography, May 19-21, 1987, Riva Del Garda, Italy, Vol. 2, Hüthig, Heidelberg, 1987, p. 743.
- 4 K. Minagawa, Y. Kasuya, S. Baba, G. Knapp and J. Skelly, Steroids, 47 (1986) 175.
- 5 K. Gallicano, R. Ng and L. Young, Steroids, 46 (1985) 755.
- 6 V.P. Uralets, V.A. Semenova, M.A. Yakushin and V.A. Semenov, J. Chromatogr., 279 (1983) 695.
- 7 G.P. Cartoni, A. Giarrusso, M. Ciardi and F. Rosati, J. High Resolut. Chromatogr. Chromatogr. Commun., 8 (1985) 539.

- 22
- 8 H.W. Dürbeck, I. Büker, B. Scheulen and B. Telin, J. Chromatogr., 167 (1978) 117.
- 9 J.M. Curvers, F.A. Maris, C.A. Cramers, C. Schutjes and J.A. Rijks, J. High Resolut. Chromatogr. Chromatogr. Commun., 7 (1984) 414.
- 10 W.J.J. Leunissen and J.H.H. Thijssen, J. Chromatogr., 146 (1978) 365.
- 11 W.J.J. Leunissen, Quantitative Aspects of the Determination of Steroid Profiles from Urine by Capillary Gas Chromatography, Doctoral Thesis, Eindhoven University, Eindhoven 1979, 162 pp.
- 12 J.-P. Thenot and E.C. Horning, Anal. Lett., 5 (1972) 21.